MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment
A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment
A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment
A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment
Journal Article

A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment

2008
Request Book From Autostore and Choose the Collection Method
Overview
A hybrid ensemble transform Kalman filter–three-dimensional variational data assimilation (ETKF–3DVAR) system for the Weather Research and Forecasting (WRF) Model is introduced. The system is based on the existing WRF 3DVAR. Unlike WRF 3DVAR, which utilizes a simple, static covariance model to estimate the forecast-error statistics, the hybrid system combines ensemble covariances with the static covariances to estimate the complex, flow-dependent forecast-error statistics. Ensemble covariances are incorporated by using the extended control variable method during the variational minimization. The ensemble perturbations are maintained by the computationally efficient ETKF. As an initial attempt to test and understand the newly developed system, both an observing system simulation experiment under the perfect model assumption (Part I) and the real observation experiment (Part II) were conducted. In these pilot studies, the WRF was run over the North America domain at a coarse grid spacing (200 km) to emphasize synoptic scales, owing to limited computational resources and the large number of experiments conducted. In Part I, simulated radiosonde wind and temperature observations were assimilated. The results demonstrated that the hybrid data assimilation method provided more accurate analyses than the 3DVAR. The horizontal distributions of the errors demonstrated the hybrid analyses had larger improvements over data-sparse regions than over data-dense regions. It was also found that the ETKF ensemble spread in general agreed with the root-mean-square background forecast error for both the first- and second-order measures. Given the coarse resolution, relatively sparse observation network, and perfect model assumption adopted in this part of the study, caution is warranted when extrapolating the results to operational applications.