MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Wetland soil affects phosphorus lability
Wetland soil affects phosphorus lability
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Wetland soil affects phosphorus lability
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Wetland soil affects phosphorus lability
Wetland soil affects phosphorus lability

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Wetland soil affects phosphorus lability
Wetland soil affects phosphorus lability
Journal Article

Wetland soil affects phosphorus lability

2024
Request Book From Autostore and Choose the Collection Method
Overview
Wetlands act as filters, retaining phosphorus (P). The objective of this study was to evaluate the degree of P lability of hydromorphic (Histosol) and non-hydromorphic (Cambisol) soils under natural condition (no P addition) and with mineral P addition. The mineral P added was equivalent to 100% of the maximum phosphorus adsorption capacity, incubated during 0 and 120 days, at depths of 0-10 and 40-60 cm. The sequential P extraction was: labile, moderately labile, low lability, and residual. Under the natural condition, the moderate and low lability fractions were predominant in the Histosol, indicating lower P lability compared to the Cambisol. Total phosphorus (Pt) and organic phosphorus (Po) were higher in the Histosol compared to the Cambisol. After 120 days incubation with mineral P, the labile fraction decreased and the moderately labile fraction increased in the Histosol, demonstrating the effect of time on P stability. The addition of mineral P increased inorganic P (Pi) and also Po in both soils, indicating a strong interaction of mineral P with soil organic matter. The Po extracted with NaOH 0.1 mol L-1 (moderately labile) was predominant in both soils and it was higher in the Histosol when compared to the Cambisol. In general, under both conditions (natural and mineral P addition), the Histosol stored P in more stable forms, reinforcing the need for permanent preservation of wetlands.

MBRLCatalogueRelatedBooks