MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches
Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches
Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches
Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches
Journal Article

Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches

2024
Request Book From Autostore and Choose the Collection Method
Overview
In this study, a multi-objective optimization regarding the tribological characteristics of the hybrid composite with a base material of aluminum alloy A356 as a constituent, reinforced with a 10 wt.% of silicon carbide (SiC), size 39 µm, and 1, 3, and 5 wt.% graphite (Gr), size 35 µm, was performed using the Taguchi method, gray relational analysis (GRA), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) decision-making methods. Tribological tests were carried out on a “block on disc” type tribometer with lubrication. Load, sliding speed, and graphite mass concentration were analyzed as input parameters. As output parameters, wear rate and coefficient of friction were calculated. An analysis of variance (ANOVA) was conducted to identify all parameters that have a significant influence on the output multi-response. It was found that the normal load has the highest influence of 41.86%, followed by sliding speed at 32.48% and graphite addition at 18.47%, on the tribological characteristics of composites. Multi-objective optimization determined that the minimal wear rate and coefficient of friction are obtained when the load is 40 N, the sliding speed is 1 m/s, and the composite contains 3 wt.% Gr. The optimal combination of parameters achieved by GRA was also confirmed by the TOPSIS method, which indicates that both methods can be used with high reliability to optimize the tribological characteristics. The analysis of worn surfaces using scanning electron microscopy revealed adhesive and delamination wear as dominant mechanisms.