MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model
Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model
Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model
Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model
Journal Article

Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model

2021
Request Book From Autostore and Choose the Collection Method
Overview
With the spread of the novel coronavirus disease 2019 (COVID-19) around the world, the estimation of the incubation period of COVID-19 has become a hot issue. Based on the doubly interval-censored data model, we assume that the incubation period follows lognormal and Gamma distribution, and estimate the parameters of the incubation period of COVID-19 by adopting the maximum likelihood estimation, expectation maximization algorithm and a newly proposed algorithm (expectation mostly conditional maximization algorithm, referred as ECIMM). The main innovation of this paper lies in two aspects: Firstly, we regard the sample data of the incubation period as the doubly interval-censored data without unnecessary data simplification to improve the accuracy and credibility of the results; secondly, our new ECIMM algorithm enjoys better convergence and universality compared with others. With the framework of this paper, we conclude that 14-day quarantine period can largely interrupt the transmission of COVID-19, however, people who need specially monitoring should be isolated for about 20 days for the sake of safety. The results provide some suggestions for the prevention and control of COVID-19. The newly proposed ECIMM algorithm can also be used to deal with the doubly interval-censored data model appearing in various fields.

MBRLCatalogueRelatedBooks