MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Independent Component Analysis via Distance Covariance
Independent Component Analysis via Distance Covariance
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Independent Component Analysis via Distance Covariance
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Independent Component Analysis via Distance Covariance
Independent Component Analysis via Distance Covariance

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Independent Component Analysis via Distance Covariance
Independent Component Analysis via Distance Covariance
Journal Article

Independent Component Analysis via Distance Covariance

2017
Request Book From Autostore and Choose the Collection Method
Overview
This article introduces a novel statistical framework for independent component analysis (ICA) of multivariate data. We propose methodology for estimating mutually independent components, and a versatile resampling-based procedure for inference, including misspecification testing. Independent components are estimated by combining a nonparametric probability integral transformation with a generalized nonparametric whitening method based on distance covariance that simultaneously minimizes all forms of dependence among the components. We prove the consistency of our estimator under minimal regularity conditions and detail conditions for consistency under model misspecification, all while placing assumptions on the observations directly, not on the latent components. U statistics of certain Euclidean distances between sample elements are combined to construct a test statistic for mutually independent components. The proposed measures and tests are based on both necessary and sufficient conditions for mutual independence. We demonstrate the improvements of the proposed method over several competing methods in simulation studies, and we apply the proposed ICA approach to two real examples and contrast it with principal component analysis.