MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin
Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin
Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin
Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin
Journal Article

Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin

2022
Request Book From Autostore and Choose the Collection Method
Overview
A digital twin (DT) for nuclear reactor monitoring can be implemented using either a differential equations-based physics model or a data-driven machine learning model. The challenge of a physics-model-based DT consists of achieving sufficient model fidelity to represent a complex experimental system, whereas the challenge of a data-driven DT consists of extensive training requirements and a potential lack of predictive ability. We investigate the performance of a hybrid approach, which is based on physics-informed neural networks (PINNs) that encode fundamental physical laws into the loss function of the neural network. We develop a PINN model to solve the point kinetic equations (PKEs), which are time-dependent, stiff, nonlinear, ordinary differential equations that constitute a nuclear reactor reduced-order model under the approximation of ignoring spatial dependence of the neutron flux. The PINN model solution of PKEs is developed to monitor the start-up transient of Purdue University Reactor Number One (PUR-1) using experimental parameters for the reactivity feedback schedule and the neutron source. The results demonstrate strong agreement between the PINN solution and finite difference numerical solution of PKEs. We investigate PINNs performance in both data interpolation and extrapolation. For the test cases considered, the extrapolation errors are comparable to those of interpolation predictions. Extrapolation accuracy decreases with increasing time interval.