MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules
Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules
Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules
Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules
Journal Article

Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules

2021
Request Book From Autostore and Choose the Collection Method
Overview
Phonon polaritons in van der Waals materials can strongly enhance light–matter interactions at mid-infrared frequencies, owing to their extreme field confinement and long lifetimes1–7. Phonon polaritons thus bear potential for vibrational strong coupling with molecules. Although the onset of vibrational strong coupling was observed spectroscopically with phonon-polariton nanoresonators8, no experiments have resolved vibrational strong coupling in real space and with propagating modes. Here we demonstrate by nanoimaging that vibrational strong coupling can be achieved between propagating phonon polaritons in thin van der Waals crystals (hexagonal boron nitride) and molecular vibrations in adjacent thin molecular layers. We performed near-field polariton interferometry, showing that vibrational strong coupling leads to the formation of a propagating hybrid mode with a pronounced anti-crossing region in its dispersion, in which propagation with negative group velocity is found. Numerical calculations predict vibrational strong coupling for nanometre-thin molecular layers and phonon polaritons in few-layer van der Waals materials, which could make propagating phonon polaritons a promising platform for ultrasensitive on-chip spectroscopy and strong-coupling experiments.Real-space mid-infrared nanoimaging reveals vibrational strong coupling between molecules and propagating phonon polaritons in unstructured, thin hexagonal boron nitride layers, which could provide a platform for testing strong coupling and local control of chemical properties.