MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Robust Inference With Multiway Clustering
Robust Inference With Multiway Clustering
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Robust Inference With Multiway Clustering
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Robust Inference With Multiway Clustering
Robust Inference With Multiway Clustering

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Robust Inference With Multiway Clustering
Robust Inference With Multiway Clustering
Journal Article

Robust Inference With Multiway Clustering

2011
Request Book From Autostore and Choose the Collection Method
Overview
In this article we propose a variance estimator for the OLS estimator as well as for nonlinear estimators such as logit, probit, and GMM. This variance estimator enables cluster-robust inference when there is two-way or multiway clustering that is nonnested. The variance estimator extends the standard cluster-robust variance estimator or sandwich estimator for one-way clustering (e.g., Liang and Zeger 1986; Arellano 1987) and relies on similar relatively weak distributional assumptions. Our method is easily implemented in statistical packages, such as Stata and SAS, that already offer cluster-robust standard errors when there is one-way clustering. The method is demonstrated by a Monte Carlo analysis for a two-way random effects model; a Monte Carlo analysis of a placebo law that extends the state-year effects example of Bertrand, Duflo, and Mullainathan (2004) to two dimensions; and by application to studies in the empirical literature where two-way clustering is present.