MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Optimizing Planting Density for Increased Resource Use Efficiency in Baby-Leaf Production of Lettuce (Lactuca sativa L.) and Basil (Ocimum basilicum L.) in Vertical Farms
Optimizing Planting Density for Increased Resource Use Efficiency in Baby-Leaf Production of Lettuce (Lactuca sativa L.) and Basil (Ocimum basilicum L.) in Vertical Farms
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Optimizing Planting Density for Increased Resource Use Efficiency in Baby-Leaf Production of Lettuce (Lactuca sativa L.) and Basil (Ocimum basilicum L.) in Vertical Farms
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Optimizing Planting Density for Increased Resource Use Efficiency in Baby-Leaf Production of Lettuce (Lactuca sativa L.) and Basil (Ocimum basilicum L.) in Vertical Farms
Optimizing Planting Density for Increased Resource Use Efficiency in Baby-Leaf Production of Lettuce (Lactuca sativa L.) and Basil (Ocimum basilicum L.) in Vertical Farms

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Optimizing Planting Density for Increased Resource Use Efficiency in Baby-Leaf Production of Lettuce (Lactuca sativa L.) and Basil (Ocimum basilicum L.) in Vertical Farms
Optimizing Planting Density for Increased Resource Use Efficiency in Baby-Leaf Production of Lettuce (Lactuca sativa L.) and Basil (Ocimum basilicum L.) in Vertical Farms
Journal Article

Optimizing Planting Density for Increased Resource Use Efficiency in Baby-Leaf Production of Lettuce (Lactuca sativa L.) and Basil (Ocimum basilicum L.) in Vertical Farms

2025
Request Book From Autostore and Choose the Collection Method
Overview
Vertical farming is gaining popularity as a sustainable solution to global food demand, particularly in urban areas where space is limited. However, optimizing key factors such as planting density remains a critical issue, as it directly affects light interception, energy efficiency, and crop yield. Lettuce and basil, the most commonly grown crops in vertical farms, were chosen for this study, with the aim of addressing the impact of planting density on light interception and overall productivity for improving the performance and sustainability of vertical farming systems. Plants were grown in an ebb-and-flow system of a fully controlled experimental vertical farm, where light was provided by light-emitting diode fixtures delivering a photoperiod of 16 h d−1 and 200 µmol m−2 s−1 of photosynthetic photon flux density. Experimental treatments included three planting densities, namely 123 (low density, LD), 237 (medium density, MD), and 680 (high density, HD) plant m−2. At the final harvest (29 days after sowing), the adoption of the highest planting density (680 plant m−2) resulted in greater fresh yield (kg FW m−2), leaf area index (LAI, m2 m−2), light use efficiency (LUE, g DW mol−1) and light energy use efficiency (L-EUE, g FW kWh−1) for both lettuce (+207%, +227%, +142%, +206%, respectively), and basil (+312%, +316%, +291, +309%, respectively), as compared to the lowest density (123 plant m−2). However, the fresh and dry weights of the individual plants were lowered, probably as a result of the reduced light availability due to the highly dense plants’ canopy. Overall, these findings underscore the potential of increasing planting density in vertical farms to enhance yield and resource efficiency.