MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
Journal Article

Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data

2023
Request Book From Autostore and Choose the Collection Method
Overview
Karakoram Highway (KKH) is an international route connecting South Asia with Central Asia and China that holds socio-economic and strategic significance. However, KKH has extreme geological conditions that make it prone and vulnerable to natural disasters, primarily landslides, posing a threat to its routine activities. In this context, the study provides an updated inventory of landslides in the area with precisely measured slope deformation (Vslope), utilizing the SBAS-InSAR (small baseline subset interferometric synthetic aperture radar) and PS-InSAR (persistent scatterer interferometric synthetic aperture radar) technology. By processing Sentinel-1 data from June 2021 to June 2023, utilizing the InSAR technique, a total of 571 landslides were identified and classified based on government reports and field investigations. A total of 24 new prospective landslides were identified, and some existing landslides were redefined. This updated landslide inventory was then utilized to create a landslide susceptibility model, which investigated the link between landslide occurrences and the causal variables. Deep learning (DL) and machine learning (ML) models, including convolutional neural networks (CNN 2D), recurrent neural networks (RNNs), random forest (RF), and extreme gradient boosting (XGBoost), are employed. The inventory was split into 70% for training and 30% for testing the models, and fifteen landslide causative factors were used for the susceptibility mapping. To compare the accuracy of the models, the area under the curve (AUC) of the receiver operating characteristic (ROC) was used. The CNN 2D technique demonstrated superior performance in creating the landslide susceptibility map (LSM) for KKH. The enhanced LSM provides a prospective modeling approach for hazard prevention and serves as a conceptual reference for routine management of the KKH for risk assessment and mitigation.