MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela
Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela
Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela
Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela
Journal Article

Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela

2019
Request Book From Autostore and Choose the Collection Method
Overview
Aquatic plants have to adapt to the environments distinct from where land plants grow. A critical aspect of adaptation is the dynamics of sequence repeats, not resolved in older sequencing platforms due to incomplete and fragmented genome assemblies from short reads. Therefore, we used PacBio long-read sequencing of the Spirodela polyrhiza genome, reaching a 44-fold increase of contiguity with an N50 (a median of contig lengths) of 831 kb and filling 95.4% of gaps left from the previous version. Reconstruction of repeat regions indicates that sequentially nested long terminal repeat (LTR) retrotranspositions occur early in monocot evolution, featured with both prokaryote-like gene-rich regions and eukaryotic repeat islands. Protein-coding genes are reduced to 18,708 gene models supported by 492,435 high-quality full-length PacBio complementary DNA (cDNA) sequences. Different from land plants, the primitive architecture of Spirodela’s adventitious roots and lack of lateral roots and root hairs are consistent with dispensable functions of nutrient absorption. Disease-resistant genes encoding antimicrobial peptides and dirigent proteins are expanded by tandem duplications. Remarkably, disease-resistant genes are not only amplified, but also highly expressed, consistent with low levels of 24-nucleotide (nt) small interfering RNA (siRNA) that silence the immune system of land plants, thereby protecting Spirodela against a wide spectrum of pathogens and pests. The long-read sequence information not only sheds light on plant evolution and adaptation to the environment, but also facilitates applications in bioenergy and phytoremediation.