MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Lithographic band structure engineering of graphene
Lithographic band structure engineering of graphene
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Lithographic band structure engineering of graphene
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Lithographic band structure engineering of graphene
Lithographic band structure engineering of graphene

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Lithographic band structure engineering of graphene
Lithographic band structure engineering of graphene
Journal Article

Lithographic band structure engineering of graphene

2019
Request Book From Autostore and Choose the Collection Method
Overview
Two-dimensional materials such as graphene allow direct access to the entirety of atoms constituting the crystal. While this makes shaping by lithography particularly attractive as a tool for band structure engineering through quantum confinement effects, edge disorder and contamination have so far limited progress towards experimental realization. Here, we define a superlattice in graphene encapsulated in hexagonal boron nitride, by etching an array of holes through the heterostructure with minimum feature sizes of 12–15 nm. We observe a magnetotransport regime that is distinctly different from the characteristic Landau fan of graphene, with a sizeable bandgap that can be tuned by a magnetic field. The measurements are accurately described by transport simulations and analytical calculations. Finally, we observe strong indications that the lithographically engineered band structure at the main Dirac point is cloned to a satellite peak that appears due to moiré interactions between the graphene and the encapsulating material.Dense nanostructuring of hBN-encapsulated graphene enables band structure engineering with distinct magnetotransport signatures and a tunable bandgap.