Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Power Transmission Efficiency Analysis of 42 kW Power Agricultural Tractor According to Tillage Depth during Moldboard Plowing
by
Hong, Dong-Hyuck
, Kim, Yong-Joo
, Cheon, Su-Hwan
, Baek, Seung-Yun
, Baek, Seung-Min
, Lee, Kyeong-Hwan
, Kim, Wan-Soo
, Siddique, Md. Abu Ayub
, Lee, Sang-Dae
, Kim, Yeon-Soo
, Park, Seong-Un
in
Agricultural equipment
/ Agricultural production
/ Agricultural research
/ Agricultural technology
/ agricultural tractor
/ Corn
/ Depth measurement
/ Design optimization
/ Digital agriculture
/ Efficiency
/ Experiments
/ Farm machinery
/ farming systems
/ Fault diagnosis
/ Field tests
/ Fuel consumption
/ fuel efficiency
/ hardpans
/ Mechanical drives
/ Moisture content
/ moldboard plowing
/ Plowing
/ Plows
/ Power consumption
/ power requirement
/ power requirements
/ Power transmission
/ power transmission efficiency
/ Shafts (machine elements)
/ Shear strength
/ Soil depth
/ Soil properties
/ Soils
/ Tillage
/ tillage depth
/ tractors
/ Transmission efficiency
/ Travel
/ Workload
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Power Transmission Efficiency Analysis of 42 kW Power Agricultural Tractor According to Tillage Depth during Moldboard Plowing
by
Hong, Dong-Hyuck
, Kim, Yong-Joo
, Cheon, Su-Hwan
, Baek, Seung-Yun
, Baek, Seung-Min
, Lee, Kyeong-Hwan
, Kim, Wan-Soo
, Siddique, Md. Abu Ayub
, Lee, Sang-Dae
, Kim, Yeon-Soo
, Park, Seong-Un
in
Agricultural equipment
/ Agricultural production
/ Agricultural research
/ Agricultural technology
/ agricultural tractor
/ Corn
/ Depth measurement
/ Design optimization
/ Digital agriculture
/ Efficiency
/ Experiments
/ Farm machinery
/ farming systems
/ Fault diagnosis
/ Field tests
/ Fuel consumption
/ fuel efficiency
/ hardpans
/ Mechanical drives
/ Moisture content
/ moldboard plowing
/ Plowing
/ Plows
/ Power consumption
/ power requirement
/ power requirements
/ Power transmission
/ power transmission efficiency
/ Shafts (machine elements)
/ Shear strength
/ Soil depth
/ Soil properties
/ Soils
/ Tillage
/ tillage depth
/ tractors
/ Transmission efficiency
/ Travel
/ Workload
2020
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Power Transmission Efficiency Analysis of 42 kW Power Agricultural Tractor According to Tillage Depth during Moldboard Plowing
by
Hong, Dong-Hyuck
, Kim, Yong-Joo
, Cheon, Su-Hwan
, Baek, Seung-Yun
, Baek, Seung-Min
, Lee, Kyeong-Hwan
, Kim, Wan-Soo
, Siddique, Md. Abu Ayub
, Lee, Sang-Dae
, Kim, Yeon-Soo
, Park, Seong-Un
in
Agricultural equipment
/ Agricultural production
/ Agricultural research
/ Agricultural technology
/ agricultural tractor
/ Corn
/ Depth measurement
/ Design optimization
/ Digital agriculture
/ Efficiency
/ Experiments
/ Farm machinery
/ farming systems
/ Fault diagnosis
/ Field tests
/ Fuel consumption
/ fuel efficiency
/ hardpans
/ Mechanical drives
/ Moisture content
/ moldboard plowing
/ Plowing
/ Plows
/ Power consumption
/ power requirement
/ power requirements
/ Power transmission
/ power transmission efficiency
/ Shafts (machine elements)
/ Shear strength
/ Soil depth
/ Soil properties
/ Soils
/ Tillage
/ tillage depth
/ tractors
/ Transmission efficiency
/ Travel
/ Workload
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Power Transmission Efficiency Analysis of 42 kW Power Agricultural Tractor According to Tillage Depth during Moldboard Plowing
Journal Article
Power Transmission Efficiency Analysis of 42 kW Power Agricultural Tractor According to Tillage Depth during Moldboard Plowing
2020
Request Book From Autostore
and Choose the Collection Method
Overview
In order to optimize tractor design and optimize efficiency during tillage operation, it is essential to verify the impact through field tests on factors affecting the tractor load. The objectives of this study were to investigate the effect of tillage depth on power transmission efficiency of 42 kW power agricultural tractor during moldboard plowing. A load measurement system and a tillage depth measurement system were configured for field tests. To analyze the effect of tillage depth on power transmission efficiency and fuel consumption, the data measured in the three-repeated field test were classified according to tillage depth. As the tillage depth increased from 11 cm at the top of the hardpan to 23 cm at the deepest, the required power of the engine increased by approximately 13% from 35.48 kW to 40.11 kW, and the power transmission efficiency also increased significantly from 66% to 95%. Among them, the power transmission efficiency of the rear axle was significantly increased from 38% to 59%, which was the most affected. As the tillage depth increased, the overall power requirement is greatly increased due to the resulting workload, but the fuel consumption and the specific fuel consumption are reduced because the engine speed of the tractor is reduced. As the tillage depth increased from 11 cm to 23 cm, the fuel consumption rate was rather reduced by 13.5% as the engine rotational speed decreased 11.3% due to the increase work load of tractor. In addition, the specific fuel consumption decreased from 302.44 g/kWh to 236.93 g/kWh, showing a fuel consumption saving of up to 21.7% during moldboard plow. In addition, as the tillage depth increased, the ratio of the value excluding the mechanical and hydraulic power requirements has significantly decreased from 34% to 5% as the power transmission efficiency increases. This study considers the soil properties according to the soil depth, as well as the power transmission efficiency and fuel consumption rate. The research results can provide useful information for research on power transmission efficiency and selection of an appropriate power source of agricultural tractor according to tillage depth during moldboard plowing and are expected to be used in various ways as basic studies of digital farming research in agricultural machinery.
This website uses cookies to ensure you get the best experience on our website.