MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach
Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach
Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach
Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach
Journal Article

Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach

2021
Request Book From Autostore and Choose the Collection Method
Overview
This paper proposes a privacy-preserving energy management of a shared energy storage system (SESS) for multiple smart buildings using federated reinforcement learning (FRL). To preserve the privacy of energy scheduling of buildings connected to the SESS, we present a distributed deep reinforcement learning (DRL) framework using the FRL method, which consists of a global server (GS) and local building energy management systems (LBEMSs). In the framework, the LBEMS DRL agents share only a randomly selected part of their trained neural network for energy consumption models with the GS without consumer’s energy consumption data. Using the shared models, the GS executes two processes: (i) construction and broadcast of a global model of energy consumption to the LBEMS agents for retraining their local models and (ii) training of the SESS DRL agent’s energy charging and discharging from and to the utility and buildings. Simulation studies are conducted using one SESS and three smart buildings with solar photovoltaic systems. The results demonstrate that the proposed approach can schedule the charging and discharging of the SESS and an optimal energy consumption of heating, ventilation, and air conditioning systems in smart buildings under heterogeneous building environments while preserving the privacy of buildings’ energy consumption.