MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Reserve design to optimize functional connectivity and animal density
Reserve design to optimize functional connectivity and animal density
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Reserve design to optimize functional connectivity and animal density
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Reserve design to optimize functional connectivity and animal density
Reserve design to optimize functional connectivity and animal density

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Reserve design to optimize functional connectivity and animal density
Reserve design to optimize functional connectivity and animal density
Journal Article

Reserve design to optimize functional connectivity and animal density

2019
Request Book From Autostore and Choose the Collection Method
Overview
Ecological distance-based spatial capture–recapture models (SCR) are a promising approach for simultaneously estimating animal density and connectivity, both of which affect spatial population processes and ultimately species persistence. We explored how SCR models can be integrated into reserve-design frameworks that explicitly acknowledge both the spatial distribution of individuals and their space use resulting from landscape structure. We formulated the design of wildlife reserves as a budget-constrained optimization problem and conducted a simulation to explore 3 different SCR-informed optimization objectives that prioritized different conservation goals by maximizing the number of protected individuals, reserve connectivity, and density-weighted connectivity. We also studied the effect on our 3 objectives of enforcing that the space-use requirements of individuals be met by the reserve for individuals to be considered conserved (referred to as home-range constraints). Maximizing local population density resulted in fragmented reserves that would likely not aid long-term population persistence, and maximizing the connectivity objective yielded reserves that protected the fewest individuals. However, maximizing density-weighted connectivity or preemptively imposing home-range constraints on reserve design yielded reserves of largely spatially compact sets of parcels covering high-density areas in the landscape with high functional connectivity between them. Our results quantify the extent to which reserve design is constrained by individual home-range requirements and highlight that accounting for individual space use in the objective and constraints can help in the design of reserves that balance abundance and connectivity in a biologically relevant manner. Los modelos de captura-recaptura espacial (CRE) basados en distancias ecológicas son un método prometedor para estimar la densidad animal y la conectividad, las cuales afectan los procesos poblacionales espaciales y, en última instancia, la persistencia de las especies. Exploramos cómo se puede integrar a los modelos CRE en los marcos de diseño de reserva que explícitamente reconocen tanto la distribución espacial de los individuos como su uso del espacio resultante de la estructura del paisaje. Formulamos el diseño de reservas de vida silvestre como un problema de optimización de presupuesto limitado y realizamos una simulación para explorar 3 diferentes objetivos de optimización informados por CRE que priorizaron diferentes metas de conservación mediante la maximización del número de individuos protegidos; la conectividad de la reserva y la conectividad ponderada por la densidad. También estudiamos el efecto sobre nuestros objetivos de hacer que los requerimientos individuales de uso de espacio fuesen satisfechos por la reserva de manera que se pudiese considerar que los individuos estaban protegidos (referidos como restricciones de rango de hogar). La maximización de la densidad de la población local resultó en reservas fragmentadas que probablemente no contribuyan a la persistencia de la población a largo plazo, mientras que la maximización de la conectividad produjo reservas que protegían al menor número de individuos. Sin embargo, la maximización de la conectividad ponderada por la densidad o la imposición preventiva de restricciones de rango de hogar en el diseño de reservas produjo reservas compuestas por conjuntos de parcelas mayormente compactas espacialmente que cubrían áreas de densidad alta en el paisaje con alta conectividad funcional entre ellas. Nuestros resultados cuantifican la extensiónalacualeldiseño de reservas esta limitado por los requerimientos de rango de hogar individuales y resaltan que la consideración del uso de espacio individual en el objetivo y limitaciones puede ayudar al diseño de reservas que equilibren la abundancia y la conectividad de manera biológicamente relevante. 基于生态距离的空间捕获-重捕模型(spatial capture-recapture model, SCR) 有望同时估计动物密度和连 接度,这两者通过影响种群空间过程,最终影响着物种续存。我们探究了如何将 SCR 模型整合到保护区设计框 架中,以兼顾个体的空间分布和对景观结构的空间利用。我们认为野生动物保护区设计可以看作是受预算限制 的最优化问题,并且模拟了三种基于 SCR 信息实现保护目标最优化的情况,即优先考虑保护个体数目最大化、 保护区连接度最优化以及密度加权的连接度最优化。我们还分析了在保护区满足个体:空间利用需求的前提下这 三个目标受到的影响,这个条件是为了确保个体凌到有效保护(即家域约束)。实现局部种群密度最大化会导致 保护区破碎化,这可能不利于种群的长期续存;而考虑连接度最优化则会导致保护区覆盖的个体数最少。然而, 考虑密度加权的连接度最优化,或在保护区设计中优先加人家域约束,则保护区会含有大量空间上紧密的斑块 以覆盖景观中种群密度高的地区,斑块之间功能连接度也较高。本研究结果量化分析了个体的家域需求的限制 对保护区设计的影响程度,并强调了在保护区设计的目标和限制中考虑个体:空间利用将有助于设计出生物学意 义上平衡丰度和连接度的保护区。