MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries
Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries
Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries
Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries
Journal Article

Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries

2024
Request Book From Autostore and Choose the Collection Method
Overview
The most popular anode material in commercial Li-ion batteries is still graphite. However, its low intercalation potential is close to that of lithium, which results in the dendritic growth of lithium at its surface, and the formation of a passivation film that limits the rate capability and may result in safety hazards. High-performance anodes are thus needed. In this context, lithium titanite oxide (LTO) has attracted attention as this anode material has important advantages. Due to its higher lithium intercalation potential (1.55 V vs. Li+/Li), the dendritic deposition of lithium is avoided, and the safety is increased. In addition, LTO is a zero-strain material, as the volume change upon lithiation-delithiation is negligible, which increases the cycle life of the battery. Finally, the diffusion coefficient of Li+ in LTO (2 × 10−8 cm2 s−1) is larger than in graphite, which, added to the fact that the dendritic effect is avoided, increases importantly the rate capability. The LTO anode has two drawbacks. The energy density of the cells equipped with LTO anode is lower compared with the same cells with graphite anode, because the capacity of LTO is limited to 175 mAh g−1, and because of the higher redox potential. The main drawback, however, is the low electrical conductivity (10−13 S cm−1) and ionic conductivity (10−13–10−9 cm2 s−1). Different strategies have been used to address this drawback: nano-structuration of LTO to reduce the path of Li+ ions and electrons inside LTO, ion doping, and incorporation of conductive nanomaterials. The synthesis of LTO with the appropriate structure and the optimized doping and the synthesis of composites incorporating conductive materials is thus the key to achieving high-rate capability. That is why a variety of synthesis recipes have been published on the LTO-based anodes. The progress in the synthesis of LTO-based anodes in recent years is such that LTO is now considered a substitute for graphite in lithium-ion batteries for many applications, including electric cars and energy storage to solve intermittence problems of wind mills and photovoltaic plants. In this review, we examine the different techniques performed to fabricate LTO nanostructures. Details of the synthesis recipes and their relation to electrochemical performance are reported, allowing the extraction of the most powerful synthesis processes in relation to the recent experimental results.