MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Descriptive and functional characterization of epidermal growth factor-like domain 8 in mouse cortical thymic epithelial cells by integrated analysis of gene expression signatures and networks
Descriptive and functional characterization of epidermal growth factor-like domain 8 in mouse cortical thymic epithelial cells by integrated analysis of gene expression signatures and networks
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Descriptive and functional characterization of epidermal growth factor-like domain 8 in mouse cortical thymic epithelial cells by integrated analysis of gene expression signatures and networks
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Descriptive and functional characterization of epidermal growth factor-like domain 8 in mouse cortical thymic epithelial cells by integrated analysis of gene expression signatures and networks
Descriptive and functional characterization of epidermal growth factor-like domain 8 in mouse cortical thymic epithelial cells by integrated analysis of gene expression signatures and networks

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Descriptive and functional characterization of epidermal growth factor-like domain 8 in mouse cortical thymic epithelial cells by integrated analysis of gene expression signatures and networks
Descriptive and functional characterization of epidermal growth factor-like domain 8 in mouse cortical thymic epithelial cells by integrated analysis of gene expression signatures and networks
Journal Article

Descriptive and functional characterization of epidermal growth factor-like domain 8 in mouse cortical thymic epithelial cells by integrated analysis of gene expression signatures and networks

2021
Request Book From Autostore and Choose the Collection Method
Overview
Epidermal growth factor-like domain 8 (EGFL8), a newly identified member of the EGFL family, and plays negative regulatory roles in mouse thymic epithelial cells (TECs) and thymocytes. However, the role of EGFL8 in these cells remains poorly understood. In the present study, in order to characterize the function of EGFL8, genome-wide expression profiles in EGFL8-overexpressing or -silenced mouse cortical TECs (cTECs) were analyzed. Microarray analysis revealed that 458 genes exhibited a >2-fold change in expression levels in the EGFL8-overexpressing vs. the EGFL8-silenced cTECs. Several genes involved in a number of cellular processes, such as the cell cycle, proliferation, growth, migration and differentiation, as well as in apoptosis, reactive oxygen species generation, chemotaxis and immune responses, were differentially expressed in the EGFL8-overexpressing or -silenced cTECs. WST-1 analysis revealed that that the overexpression of EGFL8 inhibited cTEC proliferation. To investigate the underlying mechanisms of EGFL8 in the regulation of cTEC function, genes related to essential cellular functions were selected. Reverse transcription-polymerase chain reaction analysis revealed that EGFL8 knockdown upregulated the expression of cluster differentiation 74 (CD74), Fas ligand (FasL), C-X-C motif chemokine ligand 5 (CXCL5), CXCL10, CXCL16, C-C motif chemokine ligand 20 (CCL20), vascular endothelial growth factor-A (VEGF-A), interferon regulatory factor 7 (Irf7), insulin-like growth factor binding protein-4 (IGFBP-4), thrombospondin 1 (Thbs1) and nuclear factor κB subunit 2 (NF-κB2) genes, and downregulated the expression of angiopoietin-like 1 (Angptl1), and neuropilin-1 (Nrp1) genes. Additionally, EGFL8 silencing enhanced the expression of anti-apoptotic molecules, such as B-cell lymphoma-2 (Bcl-2) and Bcl-extra large (Bcl-xL), and that of cell cycle-regulating molecules, such as cyclin-dependent kinase 1 (CDK1), CDK4, CDK6 and cyclin D1. Moreover, gene network analysis revealed that EGFL8 exerted negative effects on VEGF-A gene expression. Hence, the altered expression of several genes associated with EGFL8 expression in cTECs highlights the important physiological processes in which EGFL8 is involved, and provides insight into its biological functions.