MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Self-Organized Vegetation Patterning as a Fingerprint of Climate and Human Impact on Semi-Arid Ecosystems
Self-Organized Vegetation Patterning as a Fingerprint of Climate and Human Impact on Semi-Arid Ecosystems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Self-Organized Vegetation Patterning as a Fingerprint of Climate and Human Impact on Semi-Arid Ecosystems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Self-Organized Vegetation Patterning as a Fingerprint of Climate and Human Impact on Semi-Arid Ecosystems
Self-Organized Vegetation Patterning as a Fingerprint of Climate and Human Impact on Semi-Arid Ecosystems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Self-Organized Vegetation Patterning as a Fingerprint of Climate and Human Impact on Semi-Arid Ecosystems
Self-Organized Vegetation Patterning as a Fingerprint of Climate and Human Impact on Semi-Arid Ecosystems
Journal Article

Self-Organized Vegetation Patterning as a Fingerprint of Climate and Human Impact on Semi-Arid Ecosystems

2006
Request Book From Autostore and Choose the Collection Method
Overview
1 Spatially periodic vegetation patterns are well known in arid and semi-arid regions around the world. 2 Mathematical models have been developed that attribute this phenomenon to a symmetry-breaking instability. Such models are based on the interplay between competitive and facilitative influences that the vegetation exerts on its own dynamics when it is constrained by arid conditions, but evidence for these predictions is still lacking. Moreover, not all models can account for the development of regularly spaced spots of bare ground in the absence of a soil prepattern. 3 We applied Fourier analysis to high-resolution, remotely sensed data taken at either end of a 40-year interval in southern Niger. Statistical comparisons based on this textural characterization gave us broad-scale evidence that the decrease in rainfall over recent decades in the sub-Saharan Sahel has been accompanied by a detectable shift from homogeneous vegetation cover to spotted patterns marked by a spatial frequency of about$20 cycles\\;km^{-1}$. 4 Wood cutting and grazing by domestic animals have led to a much more marked transition in unprotected areas than in a protected reserve. 5 Field measurements demonstrated that the dominant spatial frequency was endogenous rather than reflecting the spatial variation of any pre-existing heterogeneity in soil properties. 6 All these results support the use of models that can account for periodic vegetation patterns without invoking substrate heterogeneity or anisotropy, and provide new elements for further developments, refinements and tests. 7 This study underlines the potential of studying vegetation pattern properties for monitoring climatic and human impacts on the extensive fragile areas bordering hot deserts. Explicit consideration of vegetation self-patterning may also improve our understanding of vegetation and climate interactions in arid areas.