MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function
Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function
Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function
Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function
Journal Article

Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function

2021
Request Book From Autostore and Choose the Collection Method
Overview
The concentrative power of the transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT) is thought to be fueled by the transmembrane Na + gradient, but it is conceivable that they can also tap other energy sources, for example, membrane voltage and/or the transmembrane K + gradient. We have addressed this by recording uptake of endogenous substrates or the fluorescent substrate APP + (4-(4-dimethylamino)phenyl-1-methylpyridinium) under voltage control in cells expressing DAT, NET, or SERT. We have shown that DAT and NET differ from SERT in intracellular handling of K + . In DAT and NET, substrate uptake was voltage-dependent due to the transient nature of intracellular K + binding, which precluded K + antiport. SERT, however, antiports K + and achieves voltage-independent transport. Thus, there is a trade-off between maintaining constant uptake and harvesting membrane potential for concentrative power, which we conclude to occur due to subtle differences in the kinetics of co-substrate ion binding in closely related transporters.