Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Hybrid integral transform analysis of supercooled droplets solidification
by
Cotta, Renato M.
, Naveira-Cotta, Carolina P.
, Tiwari, Manish K.
, Carvalho, Igor S.
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Hybrid integral transform analysis of supercooled droplets solidification
by
Cotta, Renato M.
, Naveira-Cotta, Carolina P.
, Tiwari, Manish K.
, Carvalho, Igor S.
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Hybrid integral transform analysis of supercooled droplets solidification
Journal Article
Hybrid integral transform analysis of supercooled droplets solidification
2021
Request Book From Autostore
and Choose the Collection Method
Overview
The freezing phenomena in supercooled liquid droplets are important for many engineering applications. For instance, a theoretical model of this phenomenon can offer insights for tailoring surface coatings and for achieving icephobicity to reduce ice adhesion and accretion. In this work, a mathematical model and hybrid numerical–analytical solutions are developed for the freezing of a supercooled droplet immersed in a cold air stream, subjected to the three main transport phenomena at the interface between the droplet and the surroundings: convective heat transfer, convective mass transfer and thermal radiation. Error-controlled hybrid solutions are obtained through the extension of the generalized integral transform technique to the transient partial differential formulation of this moving boundary heat transfer problem. The nonlinear boundary condition for the interface temperature is directly accounted for by the choice of a nonlinear eigenfunction expansion base. Also, the nonlinear equation of motion for the freezing front is solved together with the ordinary differential system for the integral transformed temperatures. After comparisons of the solution with previously reported numerical and experimental results, the influence of the related physical parameters on the droplet temperatures and freezing time is critically analysed.
Publisher
Royal Society,The Royal Society Publishing
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.