MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Pan-Arctic methanesulfonic acid aerosol: source regions, atmospheric drivers, and future projections
Pan-Arctic methanesulfonic acid aerosol: source regions, atmospheric drivers, and future projections
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Pan-Arctic methanesulfonic acid aerosol: source regions, atmospheric drivers, and future projections
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Pan-Arctic methanesulfonic acid aerosol: source regions, atmospheric drivers, and future projections
Pan-Arctic methanesulfonic acid aerosol: source regions, atmospheric drivers, and future projections

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Pan-Arctic methanesulfonic acid aerosol: source regions, atmospheric drivers, and future projections
Pan-Arctic methanesulfonic acid aerosol: source regions, atmospheric drivers, and future projections
Journal Article

Pan-Arctic methanesulfonic acid aerosol: source regions, atmospheric drivers, and future projections

2024
Request Book From Autostore and Choose the Collection Method
Overview
Natural aerosols are an important, yet understudied, part of the Arctic climate system. Natural marine biogenic aerosol components (e.g., methanesulfonic acid, MSA) are becoming increasingly important due to changing environmental conditions. In this study, we combine in situ aerosol observations with atmospheric transport modeling and meteorological reanalysis data in a data-driven framework with the aim to (1) identify the seasonal cycles and source regions of MSA, (2) elucidate the relationships between MSA and atmospheric variables, and (3) project the response of MSA based on trends extrapolated from reanalysis variables and determine which variables are contributing to these projected changes. We have identified the main source areas of MSA to be the Atlantic and Pacific sectors of the Arctic. Using gradient-boosted trees, we were able to explain 84% of the variance and find that the most important variables for MSA are indirectly related to either the gas- or aqueous-phase oxidation of dimethyl sulfide (DMS): shortwave and longwave downwelling radiation, temperature, and low cloud cover. We project MSA to undergo a seasonal shift, with non-monotonic decreases in April/May and increases in June-September, over the next 50 years. Different variables in different months are driving these changes, highlighting the complexity of influences on this natural aerosol component. Although the response of MSA due to changing oceanic variables (sea surface temperature, DMS emissions, and sea ice) and precipitation remains to be seen, here we are able to show that MSA will likely undergo a seasonal shift solely due to changes in atmospheric variables.