MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Performance comparison of the solar-driven supercritical organic Rankine cycle coupled with the vapour-compression refrigeration cycle
Performance comparison of the solar-driven supercritical organic Rankine cycle coupled with the vapour-compression refrigeration cycle
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Performance comparison of the solar-driven supercritical organic Rankine cycle coupled with the vapour-compression refrigeration cycle
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Performance comparison of the solar-driven supercritical organic Rankine cycle coupled with the vapour-compression refrigeration cycle
Performance comparison of the solar-driven supercritical organic Rankine cycle coupled with the vapour-compression refrigeration cycle

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Performance comparison of the solar-driven supercritical organic Rankine cycle coupled with the vapour-compression refrigeration cycle
Performance comparison of the solar-driven supercritical organic Rankine cycle coupled with the vapour-compression refrigeration cycle
Journal Article

Performance comparison of the solar-driven supercritical organic Rankine cycle coupled with the vapour-compression refrigeration cycle

2021
Request Book From Autostore and Choose the Collection Method
Overview
In this study, a parametric analysis was performed of a supercritical organic Rankine cycle driven by solar parabolic trough collectors (PTCs) coupled with a vapour-compression refrigeration cycle simultaneously for cooling and power production. Thermal efficiency, exergy efficiency, exergy destruction and the coefficient of performance of the cogeneration system were considered to be performance parameters. A computer program was developed in engineering equation-solver software for analysis. Influences of the PTC design parameters (solar irradiation, solar-beam incidence angle and velocity of the heat-transfer fluid in the absorber tube), turbine inlet pressure, condenser and evaporator temperature on system performance were discussed. Furthermore, the performance of the cogeneration system was also compared with and without PTCs. It was concluded that it was necessary to design the PTCs carefully in order to achieve better cogeneration performance. The highest values of exergy efficiency, thermal efficiency and exergy destruction of the cogeneration system were 92.9%, 51.13% and 1437 kW, respectively, at 0.95 kW/m2 of solar irradiation based on working fluid R227ea, but the highest coefficient of performance was found to be 2.278 on the basis of working fluid R134a. It was also obtained from the results that PTCs accounted for 76.32% of the total exergy destruction of the overall system and the cogeneration system performed well without considering solar performance.