MbrlCatalogueTitleDetail

Do you wish to reserve the book?
strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae
strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae
strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae
strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae
Journal Article

strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae

2013
Request Book From Autostore and Choose the Collection Method
Overview
Pectins are essential components of primary plant cell walls and middle lamellae, and are related to the consistency of the fruit and its textural changes during ripening. In fact, strawberries become soft as the middle lamellae of cortical parenchyma cells are extensively degraded during ripening, leading to the observed short post-harvest shelf life. Using a custom-made oligonucleotide-based strawberry microarray platform, a putative rhamnogalacturonate lyase gene (FaRGlyase1) was identified. Bioinformatic analysis of the FaRGlyase1 sequence allowed the identification of a conserved rhamnogalacturonate lyase domain, which was also present in other putative RGlyase sequences deposited in the databases. Expression of FaRGlyase1 occurred mainly in the receptacle, concurrently with ripening, and it was positively regulated by abscisic acid and negatively by auxins. FaRGLyase1 gene expression was transiently silenced by injecting live Agrobacterium cells harbouring RNA interference constructs into fruit receptacles. Light and electron microscopy analyses of these transiently silenced fruits revealed that this gene is involved in the degradation of pectins present in the middle lamella region between parenchymatic cells. In addition, genetic linkage association analyses in a strawberry-segregating population showed that FaRGLyase1 is linked to a quantitative trait loci linkage group related to fruit hardness and firmness. The results showed that FaRGlyase1 could play an important role in the fruit ripening-related softening process that reduces strawberry firmness and post-harvest life.