MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Population Pharmacokinetic Modeling of Total and Unbound Pamiparib in Glioblastoma Patients: Insights into Drug Disposition and Dosing Optimization
Population Pharmacokinetic Modeling of Total and Unbound Pamiparib in Glioblastoma Patients: Insights into Drug Disposition and Dosing Optimization
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Population Pharmacokinetic Modeling of Total and Unbound Pamiparib in Glioblastoma Patients: Insights into Drug Disposition and Dosing Optimization
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Population Pharmacokinetic Modeling of Total and Unbound Pamiparib in Glioblastoma Patients: Insights into Drug Disposition and Dosing Optimization
Population Pharmacokinetic Modeling of Total and Unbound Pamiparib in Glioblastoma Patients: Insights into Drug Disposition and Dosing Optimization

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Population Pharmacokinetic Modeling of Total and Unbound Pamiparib in Glioblastoma Patients: Insights into Drug Disposition and Dosing Optimization
Population Pharmacokinetic Modeling of Total and Unbound Pamiparib in Glioblastoma Patients: Insights into Drug Disposition and Dosing Optimization
Journal Article

Population Pharmacokinetic Modeling of Total and Unbound Pamiparib in Glioblastoma Patients: Insights into Drug Disposition and Dosing Optimization

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background: This study aimed to develop a population pharmacokinetic (PK) model that characterized the plasma concentration–time profiles of the total and unbound pamiparib, a PARP inhibitor, in glioblastoma patients and identified patient factors influencing the PK. Methods: The total and unbound pamiparib plasma concentration data were obtained from 41 glioblastoma patients receiving 60 mg of pamiparib twice daily. Nonlinear mixed-effects modeling was performed using Monolix (2024R1) to simultaneously fit the total and unbound drug plasma concentration data. The covariate model was developed by covariate screening using generalized additive modeling followed by stepwise covariate modeling. Model simulations were performed following oral doses of 10–60 mg BID. Results: The total and unbound pamiparib plasma concentration–time profiles were best described by a one-compartment model with first-order absorption and elimination. Creatinine clearance and age were the significant covariates on the apparent volume of distribution (V/F) and apparent clearance (CL/F), respectively, explaining ~22% and ~5% of IIV of V/F and CL/F. Population estimates of the absorption rate constant (Ka), V/F, CL/F, and unbound fraction for the total drug were 1.58 h−1, 44 L, 2.59 L/h, and 0.041. Model simulations suggested that doses as low as 20 mg BID may be adequate for therapeutic effects in a general patient population, assuming that a target engagement ratio (i.e., unbound Css,min/IC50) of 5 or above is sufficient for full target engagement. Conclusions: The total and unbound pamiparib plasma PK are well characterized by a linear one-compartment model, with creatinine clearance as the significant covariate on V/F. Model simulations support further clinical investigation into dose reduction to optimize the benefit-to-risk ratio of pamiparib, particularly in combination therapies.