MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Bioinspired gradient scaffolds for osteochondral tissue engineering
Bioinspired gradient scaffolds for osteochondral tissue engineering
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Bioinspired gradient scaffolds for osteochondral tissue engineering
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Bioinspired gradient scaffolds for osteochondral tissue engineering
Bioinspired gradient scaffolds for osteochondral tissue engineering

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Bioinspired gradient scaffolds for osteochondral tissue engineering
Bioinspired gradient scaffolds for osteochondral tissue engineering
Journal Article

Bioinspired gradient scaffolds for osteochondral tissue engineering

2023
Request Book From Autostore and Choose the Collection Method
Overview
Repairing articular osteochondral defects present considerable challenges in self‐repair due to the complex tissue structure and low proliferation of chondrocytes. Conventional clinical therapies have not shown significant efficacy, including microfracture, autologous/allograft osteochondral transplantation, and cell‐based techniques. Therefore, tissue engineering has been widely explored in repairing osteochondral defects by leveraging the natural regenerative potential of biomaterials to control cell functions. However, osteochondral tissue is a gradient structure with a smooth transition from the cartilage to subchondral bone, involving changes in chondrocyte morphologies and phenotypes, extracellular matrix components, collagen type and orientation, and cytokines. Bioinspired scaffolds have been developed by simulating gradient characteristics in heterogeneous tissues, such as the pores, components, and osteochondrogenesis‐inducing factors, to satisfy the anisotropic features of osteochondral matrices. Bioinspired gradient scaffolds repair osteochondral defects by altering the microenvironments of cell growth to induce osteochondrogenesis and promote the formation of osteochondral interfaces compared with homogeneous scaffolds. This review outlines the meaningful strategies for repairing osteochondral defects by tissue engineering based on gradient scaffolds and predicts the pros and cons of prospective translation into clinical practice. The difficulty in repairing osteochondral injuries is mainly the complex gradient properties of natural osteochondral structures. This review discusses the development of various osteochondral tissue engineering scaffolds with gradient properties, including pore gradients, composition gradients, and inducing factor gradients, discusses the future research focus of gradient scaffolds and the trend of osteochondral tissue engineering, and provides ideas for their potential clinical application.

MBRLCatalogueRelatedBooks