MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Genome‐wide analysis of European sea bass provides insights into the evolution and functions of single‐exon genes
Genome‐wide analysis of European sea bass provides insights into the evolution and functions of single‐exon genes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Genome‐wide analysis of European sea bass provides insights into the evolution and functions of single‐exon genes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Genome‐wide analysis of European sea bass provides insights into the evolution and functions of single‐exon genes
Genome‐wide analysis of European sea bass provides insights into the evolution and functions of single‐exon genes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Genome‐wide analysis of European sea bass provides insights into the evolution and functions of single‐exon genes
Genome‐wide analysis of European sea bass provides insights into the evolution and functions of single‐exon genes
Journal Article

Genome‐wide analysis of European sea bass provides insights into the evolution and functions of single‐exon genes

2021
Request Book From Autostore and Choose the Collection Method
Overview
Several studies have attempted to understand the origin and evolution of single‐exon genes (SEGs) in eukaryotic organisms, including fishes, but few have examined the functional and evolutionary relationships between SEGs and multiple‐exon gene (MEG) paralogs, in particular the conservation of promoter regions. Given that SEGs originate via the reverse transcription of mRNA from a “parental” MEGs, such comparisons may enable identifying evolutionarily‐related SEG/MEG paralogs, which might fulfill equivalent physiological functions. Here, the relationship of SEG proportion with MEG count, gene density, intron count, and chromosome size was assessed for the genome of the European sea bass, Dicentrarchus labrax. Then, SEGs with an MEG parent were identified, and promoter sequences of SEG/MEG paralogs were compared, to identify highly conserved functional motifs. The results revealed a total count of 1,585 (8.3% of total genes) SEGs in the European sea bass genome, which was correlated with MEG count but not with gene density. The significant correlation of SEG content with the number of MEGs suggests that SEGs were continuously and independently generated over evolutionary time following species divergence through retrotranscription events, followed by tandem duplications. Functional annotation showed that the majority of SEGs are functional, as is evident from their expression in RNA‐seq data used to support homology‐based genome annotation. Differences in 5′UTR and 3′UTR lengths between SEG/MEG paralogs observed in this study may contribute to gene expression divergence between them and therefore lead to the emergence of new SEG functions. The comparison of nonsynonymous to synonymous changes (Ka/Ks) between SEG/MEG parents showed that 74 of them are under positive selection (Ka/Ks > 1; p = .0447). An additional fifteen SEGs with an MEG parent have a common promoter, which implies that they are under the influence of common regulatory networks. This study investigated the relationship of SEG proportion with MEG count, gene density, intron count, and chromosome size for the genome of sea bass, Dicentrarchus labrax. Then, SEGs with an MEG parent were identified, and promoter sequences of SEG/MEG orthologs were compared, to identify highly conserved functional motifs. The results revealed a significant correlation between SEG and MEG counts over the genome and allowed identifying SEG/MEG orthologs that share the same promoter sequence, suggesting that they are under the influence of common regulatory networks.