MbrlCatalogueTitleDetail

Do you wish to reserve the book?
CASP-Model Sepsis Triggers Systemic Innate Immune Responses Revealed by the Systems-Level Signaling Pathways
CASP-Model Sepsis Triggers Systemic Innate Immune Responses Revealed by the Systems-Level Signaling Pathways
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
CASP-Model Sepsis Triggers Systemic Innate Immune Responses Revealed by the Systems-Level Signaling Pathways
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
CASP-Model Sepsis Triggers Systemic Innate Immune Responses Revealed by the Systems-Level Signaling Pathways
CASP-Model Sepsis Triggers Systemic Innate Immune Responses Revealed by the Systems-Level Signaling Pathways

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
CASP-Model Sepsis Triggers Systemic Innate Immune Responses Revealed by the Systems-Level Signaling Pathways
CASP-Model Sepsis Triggers Systemic Innate Immune Responses Revealed by the Systems-Level Signaling Pathways
Journal Article

CASP-Model Sepsis Triggers Systemic Innate Immune Responses Revealed by the Systems-Level Signaling Pathways

2022
Request Book From Autostore and Choose the Collection Method
Overview
Colon ascendens stent peritonitis (CASP) surgery induces a leakage of intestinal contents which may cause polymicrobial sepsis related to post-operative failure of remote multi-organs (including kidney, liver, lung and heart) and possible death from systemic syndromes. Mechanisms underlying such phenomena remain unclear. This article aims to elucidate the mechanisms underlying the CASP-model sepsis by analyzing real-world GEO data (GSE24327_A, B and C) generated from mice spleen 12 hours after a CASP-surgery in septic MyD88-deficient and wildtype mice, compared with untreated wildtype mice. Firstly, we identify and characterize 21 KO MyD88-associated signaling pathways, on which true key regulators (including ligands, receptors, adaptors, transducers, transcriptional factors and cytokines) are marked, which were coordinately, significantly, and differentially expressed at the systems-level, thus providing massive potential biomarkers that warrant experimental validations in the future. Secondly, we observe the full range of polymicrobial (viral, bacterial, and parasitic) sepsis triggered by the CASP-surgery by comparing the coordinated up- or down-regulations of true regulators among the experimental treatments born by the three data under study. Finally, we discuss the observed phenomena of “systemic syndrome”, “cytokine storm” and “KO MyD88 attenuation”, as well as the proposed hypothesis of “spleen-mediated immune-cell infiltration”. Together, our results provide novel insights into a better understanding of innate immune responses triggered by the CASP-model sepsis in both wildtype and MyD88-deficient mice at the systems-level in a broader vision. This may serve as a model for humans and ultimately guide formulating the research paradigms and composite strategies for the early diagnosis and prevention of sepsis.

MBRLCatalogueRelatedBooks