MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Hierarchical energy management for community microgrids with integration of second‐life battery energy storage systems and photovoltaic solar energy
Hierarchical energy management for community microgrids with integration of second‐life battery energy storage systems and photovoltaic solar energy
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Hierarchical energy management for community microgrids with integration of second‐life battery energy storage systems and photovoltaic solar energy
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Hierarchical energy management for community microgrids with integration of second‐life battery energy storage systems and photovoltaic solar energy
Hierarchical energy management for community microgrids with integration of second‐life battery energy storage systems and photovoltaic solar energy

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Hierarchical energy management for community microgrids with integration of second‐life battery energy storage systems and photovoltaic solar energy
Hierarchical energy management for community microgrids with integration of second‐life battery energy storage systems and photovoltaic solar energy
Journal Article

Hierarchical energy management for community microgrids with integration of second‐life battery energy storage systems and photovoltaic solar energy

2022
Request Book From Autostore and Choose the Collection Method
Overview
It is recognized by academia and industry that second‐life batteries retired from electric vehicles still have use values and can be effectively used for supporting less demanding applications. At present, there lacks investigation on the applications of re‐using retired batteries on serving residential sector's energy management. Motivated by this, this paper studies the scenario of assembling retired batteries to be second‐life battery energy storage systems (SL‐BESSs) and using them to serve the energy demand of residential communities in an affordable manner. Based on an established SL‐BESS model, a two‐level community energy management framework is proposed, which optimizes the schedules of a SL‐BESS and other energy resources in a community subjected to a variety of short‐term operational objectives. In the upper level, a many‐objective optimization model is formulated, which comprehensively integrates four objectives covering the community's multi‐scale operational considerations. A NSGA‐III‐based solving approach is developed to find the non‐dominated solutions of the model. In the lower level, the optimal community scale load reshaping decisions and energy costs obtained from the upper level are allocated to individual houses. Extensive numerical case studies are conducted, and the results show that the proposed system can realize better trade‐off among the different operational considerations with less computational cost.

MBRLCatalogueRelatedBooks