MbrlCatalogueTitleDetail

Do you wish to reserve the book?
First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures
First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures
First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures
First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures
Journal Article

First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures

2023
Request Book From Autostore and Choose the Collection Method
Overview
Spiking neural networks (SNNs) are well-suited to process asynchronous event-based data. Most of the existing SNNs use rate-coding schemes that focus on firing rate (FR), and so they generally ignore the spike timing in events. On the contrary, methods based on temporal coding, particularly time-to-first-spike (TTFS) coding, can be accurate and efficient but they are difficult to train. Currently, there is limited research on applying TTFS coding to real events, since traditional TTFS-based methods impose one-spike constraint, which is not realistic for event-based data. In this study, we present a novel decision-making strategy based on first-spike (FS) coding that encodes FS timings of the output neurons to investigate the role of the first-spike timing in classifying real-world event sequences with complex temporal structures. To achieve FS coding, we propose a novel surrogate gradient learning method for discrete spike trains. In the forward pass, output spikes are encoded into discrete times to generate FS times. In the backpropagation, we develop an error assignment method that propagates error from FS times to spikes through a Gaussian window, and then supervised learning for spikes is implemented through a surrogate gradient approach. Additional strategies are introduced to facilitate the training of FS timings, such as adding empty sequences and employing different parameters for different layers. We make a comprehensive comparison between FS and FR coding in the experiments. Our results show that FS coding achieves comparable accuracy to FR coding while leading to superior energy efficiency and distinct neuronal dynamics on data sequences with very rich temporal structures. Additionally, a longer time delay in the first spike leads to higher accuracy, indicating important information is encoded in the timing of the first spike.