MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Emergent spike patterns in neuronal populations
Emergent spike patterns in neuronal populations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Emergent spike patterns in neuronal populations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Emergent spike patterns in neuronal populations
Emergent spike patterns in neuronal populations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Emergent spike patterns in neuronal populations
Emergent spike patterns in neuronal populations
Journal Article

Emergent spike patterns in neuronal populations

2015
Request Book From Autostore and Choose the Collection Method
Overview
This numerical study documents and analyzes emergent spiking behavior in local neuronal populations. Emphasis is given to a phenomenon we call clustering , by which we refer to a tendency of random groups of neurons large and small to spontaneously coordinate their spiking activity in some fashion. Using a sparsely connected network of integrate-and-fire neurons, we demonstrate that spike clustering occurs ubiquitously in both high firing and low firing regimes. As a practical tool for quantifying such spike patterns, we propose a simple scheme with two parameters, one setting the temporal scale and the other the amount of deviation from the mean to be regarded as significant. Viewing population activity as a sequence of events , meaning relatively brief durations of elevated spiking, separated by inter-event times , we observe that background activity tends to give rise to extremely broad distributions of event sizes and inter-event times, while driving a system imposes a certain regularity on its inter-event times, producing a rhythm consistent with broad-band gamma oscillations. We note also that event sizes and inter-event times decorrelate very quickly. Dynamical analyses supported by numerical evidence are offered.