MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease
Journal Article

A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease

M
2023
Request Book From Autostore and Choose the Collection Method
Overview
BackgroundMechanisms of myocardial ischemia in obstructive and non-obstructive coronary artery disease (CAD), and the interplay between clinical, functional, biological and psycho-social features, are still far to be fully elucidated. ObjectivesTo develop a machine-learning (ML) model for the supervised prediction of obstructive versus non-obstructive CAD.MethodsFrom the EVA study, we analysed adults hospitalized for IHD undergoing conventional coronary angiography (CCA). Non-obstructive CAD was defined by a stenosis < 50% in one or more vessels. Baseline clinical and psycho-socio-cultural characteristics were used for computing a Rockwood and Mitnitski frailty index, and a gender score according to GENESIS-PRAXY methodology. Serum concentration of inflammatory cytokines was measured with a multiplex flow cytometry assay. Through an XGBoost classifier combined with an explainable artificial intelligence tool (SHAP), we identified the most influential features in discriminating obstructive versus non-obstructive CAD. ResultsAmong the overall EVA cohort (n = 509), 311 individuals (mean age 67 ± 11 years, 38% females; 67% obstructive CAD) with complete data were analysed. The ML-based model (83% accuracy and 87% precision) showed that while obstructive CAD was associated with higher frailty index, older age and a cytokine signature characterized by IL-1β, IL-12p70 and IL-33, non-obstructive CAD was associated with a higher gender score (i.e., social characteristics traditionally ascribed to women) and with a cytokine signature characterized by IL-18, IL-8, IL-23.ConclusionsIntegrating clinical, biological, and psycho-social features, we have optimized a sex- and gender-unbiased model that discriminates obstructive and non-obstructive CAD. Further mechanistic studies will shed light on the biological plausibility of these associations.Clinical trial registrationNCT02737982.