Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A Protamine Knockdown Mimics the Function of Sd in Drosophila melanogaster
by
Gingell, Luke F
, McLean, Janna R
in
Insects
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Protamine Knockdown Mimics the Function of Sd in Drosophila melanogaster
by
Gingell, Luke F
, McLean, Janna R
in
Insects
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Protamine Knockdown Mimics the Function of Sd in Drosophila melanogaster
Journal Article
A Protamine Knockdown Mimics the Function of Sd in Drosophila melanogaster
2020
Request Book From Autostore
and Choose the Collection Method
Overview
Segregation Distorter (SD) is an autosomal meiotic drive system found worldwide in natural populations of Drosophila melanogaster. This gene complex induces the preferential and nearly exclusive transmission of the SD chromosome in SD/SD+ males. This selfish propagation occurs through the interplay of the Sd locus, its enhancers and the Rsps locus during spermatid development. The key distorter locus, Sd, encodes a truncated but enzymatically active RanGAP (RanGTPase-activating protein), a key nuclear transport factor in the Ran signaling pathway. When encoded by Sd, RanGAP is mislocalized to the nucleus interior, which then traps Ran inside the nucleus and disrupts nuclear import. As a result of this aberrant nuclear transport, a process known as the histone-to-protamine transition that is required for proper spermatid condensation fails to occur in SD/SD+ males. In this process, sperm-specific protamine proteins enter the spermatid nucleus and replace the formerly chromatin-complexed histones. Previously, we have shown that mutations affecting nuclear import and export can enhance distortion in an SD background, thus verifying that a defect in nuclear transport is responsible for the unequal transmission of chromosomes. Herein, we show that specifically reducing protamines induces distortion in an SD background, verifying that protamines are transported via the RanGAP/GEF pathway and indicating that E(SD) plays a significant and unique role in the process of distortion.
Publisher
Oxford University Press
Subject
This website uses cookies to ensure you get the best experience on our website.