MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Extraordinary Conservation, Gene Loss, and Positive Selection in the Evolution of an Ancient Neurotoxin
Extraordinary Conservation, Gene Loss, and Positive Selection in the Evolution of an Ancient Neurotoxin
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Extraordinary Conservation, Gene Loss, and Positive Selection in the Evolution of an Ancient Neurotoxin
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Extraordinary Conservation, Gene Loss, and Positive Selection in the Evolution of an Ancient Neurotoxin
Extraordinary Conservation, Gene Loss, and Positive Selection in the Evolution of an Ancient Neurotoxin

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Extraordinary Conservation, Gene Loss, and Positive Selection in the Evolution of an Ancient Neurotoxin
Extraordinary Conservation, Gene Loss, and Positive Selection in the Evolution of an Ancient Neurotoxin
Journal Article

Extraordinary Conservation, Gene Loss, and Positive Selection in the Evolution of an Ancient Neurotoxin

2011
Request Book From Autostore and Choose the Collection Method
Overview
The recent determination of the genetic basis for the biosynthesis of the neurotoxin, saxitoxin, produced by cyanobacteria, has revealed a highly complex sequence of reactions, involving over 30 biosynthetic steps encoded by up to 26 genes clustered at one genomic locus, sxt. Insights into evolutionary–ecological processes have been found through the study of such secondary metabolites because they consist of a measurable phenotype with clear ecological consequences, synthesized by known genes in a small number of species. However, the processes involved in and timing of the divergence of prokaryotic secondary metabolites have been difficult to determine due to their antiquity and the possible frequency of horizontal gene transfer and homologous recombination. Through analyses of gene synteny, phylogenies of individual genes, and analyses of recombination and selection, we identified the evolutionary processes of this cluster in five species of cyanobacteria. Here, we provide evidence that the sxt cluster appears to have been largely vertically inherited and was therefore likely present early in the divergence of the Nostocales, at least 2,100 Ma, the earliest reliably dated appearance of a secondary metabolite. The sxt cluster has been extraordinarily conserved through stabilizing selection. Genes have been lost and rearranged, have undergone intra- and interspecific recombination, and have been subject to duplication followed by positive selection along the duplicated lineage, with likely consequences for the toxin analogues produced. Several hypotheses exist as to the ecophysiological role of saxitoxin: as a method of chemical defense, cellular nitrogen storage, DNA metabolism, or chemical signaling. The antiquity of this gene cluster indicates that potassium channels, not sodium channels, may have been the original targets of this compound. The extraordinary conservation of the machinery for saxitoxin synthesis, under radically changing environmental conditions, shows that it has continued to play an important adaptive role in some cyanobacteria.