MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A scalable quantum computing platform using symmetric-top molecules
A scalable quantum computing platform using symmetric-top molecules
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A scalable quantum computing platform using symmetric-top molecules
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A scalable quantum computing platform using symmetric-top molecules
A scalable quantum computing platform using symmetric-top molecules

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A scalable quantum computing platform using symmetric-top molecules
A scalable quantum computing platform using symmetric-top molecules
Journal Article

A scalable quantum computing platform using symmetric-top molecules

2019
Request Book From Autostore and Choose the Collection Method
Overview
We propose a new scalable platform for quantum computing (QC)-an array of optically trapped symmetric-top molecules (STMs) of the alkaline earth monomethoxide (MOCH3) family. Individual STMs form qubits, and the system is readily scalable to 100-1000 qubits. STM qubits have desirable features for QC compared to atoms and diatomic molecules. The additional rotational degree of freedom about the symmetric-top axis gives rise to closely spaced opposite parity K-doublets that allow full alignment at low electric fields, and the hyperfine structure naturally provides magnetically insensitive states with switchable electric dipole moments. These features lead to much reduced requirements for electric field control, provide minimal sensitivity to environmental perturbations, and allow for 2-qubit interactions that can be switched on at will. We examine in detail the internal structure of STMs relevant to our proposed platform, taking into account the full effective molecular Hamiltonian including hyperfine interactions, and identify useable STM qubit states. We then examine the effects of the electric dipolar interaction in STMs, which not only guide the design of high-fidelity gates, but also elucidate the nature of dipolar exchange in STMs. Under realistic experimental parameters, we estimate that the proposed QC platform could yield gate errors at the 10−3 level, approaching that required for fault-tolerant QC.