MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Exploring the bounds of methane catalysis in the context of atmospheric methane removal
Exploring the bounds of methane catalysis in the context of atmospheric methane removal
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Exploring the bounds of methane catalysis in the context of atmospheric methane removal
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Exploring the bounds of methane catalysis in the context of atmospheric methane removal
Exploring the bounds of methane catalysis in the context of atmospheric methane removal

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Exploring the bounds of methane catalysis in the context of atmospheric methane removal
Exploring the bounds of methane catalysis in the context of atmospheric methane removal
Journal Article

Exploring the bounds of methane catalysis in the context of atmospheric methane removal

2024
Request Book From Autostore and Choose the Collection Method
Overview
Methane, a potent greenhouse gas, is a significant contributor to global warming, with future increases in its abundance potentially leading to an increase of more than 1 ∘ C by 2050 beyond other greenhouse gases if left unaddressed. To remain within the crucial target of limiting global warming to 1.5 ∘ C, it is imperative to evaluate the potential of methane removal techniques. This study presents a scoping analysis of different catalytic technologies (thermal, photochemical and electrochemical) and materials to evaluate potential limitations and energy requirements. An analysis of mass transport and reaction rates is conducted for atmospheric methane conversion system configurations. For the vast majority of catalytic technologies, the reaction rates limit the conversion which motivates future efforts for catalyst development. An analysis of energy requirements for atmospheric methane conversion shows minimum energy configurations for various catalytic technologies within classic tube or parallel plate architectures that have analogs to ventilation and industrial fins. Methane concentrations ranging from 2 ppm (ambient) to 1000 ppm (sources, such as wetlands, fossil-fuel extraction sites, landfills etc) are examined. The study finds that electrocatalysis offers the most energy efficient approach (∼0.2 GJ tonne −1 CO 2 e) for new installations in turbulent ducts, with a total energy intensity < 1 GJ tonne −1 CO 2 e. Photocatalytic methane removal catalysts are moderately more energy intensive (∼2 GJ tonne −1 CO 2 e), but could derive much of their energy input from ‘free’ solar energy sources. Thermal systems are shown to be excessively energy intensive ( > 100 GJ tonne −1 ), while combining photovoltaics with electrochemical catalysts (∼1 GJ tonne −1 CO 2 e) have comparable energy intensity to photocatalytic methane removal catalysts.