MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Spatial patterns and drivers for wildfire ignitions in California
Spatial patterns and drivers for wildfire ignitions in California
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Spatial patterns and drivers for wildfire ignitions in California
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Spatial patterns and drivers for wildfire ignitions in California
Spatial patterns and drivers for wildfire ignitions in California

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Spatial patterns and drivers for wildfire ignitions in California
Spatial patterns and drivers for wildfire ignitions in California
Journal Article

Spatial patterns and drivers for wildfire ignitions in California

2022
Request Book From Autostore and Choose the Collection Method
Overview
As a key component of wildfire activities, ignition is regulated by complex interactions among climate, fuel, topography, and humans. Considerable studies have advanced our knowledge on patterns and drivers of total areas burned and fire frequency, but much is less known about wildfire ignition. To better design effective fire prevention and management strategies, it is critical to understand contemporary ignition patterns and predict the probability of wildfire ignitions from different sources. We here modeled and analyzed human- and lightning-caused ignition probability across the whole state and sub-ecoregions of California, USA. We developed maximum entropy models to estimate wildfire ignition probability and understand the complex impacts of anthropogenic and biophysical drivers, based on a historical ignition database. The models captured well the spatial patterns of human and lightning started wildfire ignitions in California. The human-caused ignitions dominated the areas closer to populated regions and along the traffic corridors. Model diagnosis showed that precipitation, slope, human settlement, and road network shaped the statewide spatial distribution of human-started ignitions. In contrast, the lightning-caused ignitions were distributed more remotely in Sierra Nevada and North Interior, with snow water equivalent, lightning strike density, and fuel amount as primary drivers. Separate region-specific model results further revealed the difference in the relative importance of the key drivers among different sub-ecoregions. Model predictions suggested spatially heterogeneous decadal changes and an overall slight decrease in ignition probability between circa 2000 and 2010. Our findings reinforced the importance of varying humans vs biophysical controls in different fire regimes, highlighting the need for locally optimized land management to reduce ignition probability.