MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Optimization of Production Parameters for Andrographolide-Loaded Nanoemulsion Preparation by Microfluidization and Evaluations of Its Bioactivities in Skin Cancer Cells and UVB Radiation-Exposed Skin
Optimization of Production Parameters for Andrographolide-Loaded Nanoemulsion Preparation by Microfluidization and Evaluations of Its Bioactivities in Skin Cancer Cells and UVB Radiation-Exposed Skin
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Optimization of Production Parameters for Andrographolide-Loaded Nanoemulsion Preparation by Microfluidization and Evaluations of Its Bioactivities in Skin Cancer Cells and UVB Radiation-Exposed Skin
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Optimization of Production Parameters for Andrographolide-Loaded Nanoemulsion Preparation by Microfluidization and Evaluations of Its Bioactivities in Skin Cancer Cells and UVB Radiation-Exposed Skin
Optimization of Production Parameters for Andrographolide-Loaded Nanoemulsion Preparation by Microfluidization and Evaluations of Its Bioactivities in Skin Cancer Cells and UVB Radiation-Exposed Skin

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Optimization of Production Parameters for Andrographolide-Loaded Nanoemulsion Preparation by Microfluidization and Evaluations of Its Bioactivities in Skin Cancer Cells and UVB Radiation-Exposed Skin
Optimization of Production Parameters for Andrographolide-Loaded Nanoemulsion Preparation by Microfluidization and Evaluations of Its Bioactivities in Skin Cancer Cells and UVB Radiation-Exposed Skin
Journal Article

Optimization of Production Parameters for Andrographolide-Loaded Nanoemulsion Preparation by Microfluidization and Evaluations of Its Bioactivities in Skin Cancer Cells and UVB Radiation-Exposed Skin

2021
Request Book From Autostore and Choose the Collection Method
Overview
Andrographolide (AG) is an active compound isolated from Andrographis paniculata (Family Acanthaceae). Although it possesses beneficial bioactivities to the skin, there is insufficient information of its applications for treatment of skin disorders due to low water solubility leading to complications in product development. To overcome the problem, an AG-loaded nanoemulsion (AG-NE) was formulated and prepared using a microfluidization technique. This study aimed to investigate the effect of pressure and the number of homogenization cycles (factors) on droplet size, polydispersity index and zeta potential of AG-NE (responses) and to determine the effect of AG-NE on skin cancer cells and UVB irradiation-induced skin disorders in rats. Relationships between factors versus responses obtained from the face-centered central composite design were described by quadratic models. The optimum value of parameters for the production of optimized AG-NE (Op-AG-NE) were 20,000 psi of pressure and 5 homogenization cycles. Op-AG-NE showed promising cytotoxicity effects on the human malignant melanoma- (A375 cells) and non-melanoma cells (A-431 cells) via apoptosis induction with a high selectivity index and also inhibited intracellular tyrosinase activity in the A375 cells. Op-AG-NE could reduce melanin index and healed UVB irradiation exposed skin. Op-AG-NE thus had potential for treatment of skin cancers and skin disorders from exposure to UVB radiation.