MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Electroweak bubble wall expansion: gravitational waves and baryogenesis in Standard Model-like thermal plasma
Electroweak bubble wall expansion: gravitational waves and baryogenesis in Standard Model-like thermal plasma
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Electroweak bubble wall expansion: gravitational waves and baryogenesis in Standard Model-like thermal plasma
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Electroweak bubble wall expansion: gravitational waves and baryogenesis in Standard Model-like thermal plasma
Electroweak bubble wall expansion: gravitational waves and baryogenesis in Standard Model-like thermal plasma

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Electroweak bubble wall expansion: gravitational waves and baryogenesis in Standard Model-like thermal plasma
Electroweak bubble wall expansion: gravitational waves and baryogenesis in Standard Model-like thermal plasma
Journal Article

Electroweak bubble wall expansion: gravitational waves and baryogenesis in Standard Model-like thermal plasma

2022
Request Book From Autostore and Choose the Collection Method
Overview
A bstract Computing the properties of the bubble wall of a cosmological first order phase transition at electroweak scale is of paramount importance for the correct prediction of the baryon asymmetry of the universe and the spectrum of gravitational waves. By means of the semiclassical formalism we calculate the velocity and thickness of the wall using as theoretical framework the scalar singlet extension of the SM with a parity symmetry and the SM effective field theory supplemented by a dimension six operator. We use these solutions to carefully predict the baryon asymmetry and the gravitational wave signals. The singlet scenario can easily accommodate the observed asymmetry but these solutions do not lead to observable effects at future gravity wave experiments. In contrast the effective field theory fails at explaining the baryon abundance due to the strict constraints from electric dipole moment experiments, however, the strongest solutions we found fall within the sensitivity of the LISA experiment. We provide a simple analytical approximation for the wall velocity which only requires calculation of the strength and temperature of the transition and works reasonably well in all models tested. We find that generically the weak transitions where the fluid approximation can be used to calculate the wall velocity and verify baryogenesis produce signals too weak to be observed in future gravitational wave experiments. Thus, we infer that GW signals produced by simple SM extensions visible in future experiments are likely to only result from strong transitions described by detonations with highly relativistic wall velocities.