MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Adaptive multifactorial particle swarm optimisation
Adaptive multifactorial particle swarm optimisation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Adaptive multifactorial particle swarm optimisation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Adaptive multifactorial particle swarm optimisation
Adaptive multifactorial particle swarm optimisation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Adaptive multifactorial particle swarm optimisation
Adaptive multifactorial particle swarm optimisation
Journal Article

Adaptive multifactorial particle swarm optimisation

2019
Request Book From Autostore and Choose the Collection Method
Overview
Existing multifactorial particle swarm optimisation (MFPSO) algorithms only explore a relatively narrow area between the inter-task particles. Meanwhile, these algorithms use a fixed inter-task learning probability throughout the evolution process. However, the parameter is problem dependent and can be various at different stages of the evolution. In this work, the authors devise an inter-task learning-based information transferring mechanism to replace the corresponding part in MFPSO. This inter-task learning mechanism transfers the searching step by using a differential term and updates the personal best position by employing an inter-task crossover. By this mean, the particles can explore a broad search space when utilising the additional searching experiences of other tasks. In addition, to enhance the performance on problems with different complementarity, they design a self-adaption strategy to adjust the inter-task learning probability according to the performance feedback. They compared the proposed algorithm with the state-of-the-art algorithms on various benchmark problems. Experimental results demonstrate that the proposed algorithm can transfer inter-task knowledge efficiently and perform well on the problems with different complementarity.