MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines
Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines
Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines
Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines
Journal Article

Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines

2006
Request Book From Autostore and Choose the Collection Method
Overview
Agents stabilizing G-quadruplexes have the potential to interfere with telomere replication by blocking the elongation step catalysed by telomerase or telomerase-independent mechanism and could therefore act as antitumor agents. In this study, we found that quindoline derivatives interacted preferentially with intramolecular G-quadruplex structures and were novel potent telomerase inhibitors. Treatment with quindoline derivatives reproducibly inhibited telomerase activity in human leukemia K562 cells and colon cancer SW620 cells. N′-(10H-Indolo [3,2- b ] quinolin-11-yl)-N, N-dimethyl-propane-1,3-diamine (SYUIQ-5), (one of quindoline derivatives), when added to K562 and SW620 cell culture at nonacute cytotoxic concentrations, increased time of population doublings of K562 and SW620 cells, induced a marked cessation in cell growth and cellular senescence phenotype after 35 and 18 days, respectively. Growth cessation was accompanied by a shortening of telomere length, and induction of p16, p21 and p27 protein expression. However, another compound SYUIQ-7 with greater IC 50 for telomerase had no obvious cellular effect in nonacute cytotoxic concentrations. These results indicate that quindoline derivatives as novel potent G-quadruplex interactive agents induce senescence and telomere shortening in cancer cells and therefore are promising agents for cancer treatment.