MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Regime of Validity of Soundproof Atmospheric Flow Models
Regime of Validity of Soundproof Atmospheric Flow Models
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Regime of Validity of Soundproof Atmospheric Flow Models
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Regime of Validity of Soundproof Atmospheric Flow Models
Regime of Validity of Soundproof Atmospheric Flow Models

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Regime of Validity of Soundproof Atmospheric Flow Models
Regime of Validity of Soundproof Atmospheric Flow Models
Journal Article

Regime of Validity of Soundproof Atmospheric Flow Models

2010
Request Book From Autostore and Choose the Collection Method
Overview
Ogura and Phillips derived the original anelastic model through systematic formal asymptotics using the flow Mach number as the expansion parameter. To arrive at a reduced model that would simultaneously represent internal gravity waves and the effects of advection on the same time scale, they had to adopt a distinguished limit requiring that the dimensionless stability of the background state be on the order of the Mach number squared. For typical flow Mach numbers of , this amounts to total variations of potential temperature across the troposphere of less than one Kelvin (i.e., to unrealistically weak stratification). Various generalizations of the original anelastic model have been proposed to remedy this issue. Later, Durran proposed the pseudoincompressible model following the same goals, but via a somewhat different route of argumentation. The present paper provides a scale analysis showing that the regime of validity of two of these extended models covers stratification strengths on the order of (hsc/θ)dθ/dz < M2/3, which corresponds to realistic variations of potential temperature θ across the pressure scale height hsc of . Specifically, it is shown that (i) for (hsc/θ)dθ/dz < Mμ with 0 < μ < 2, the atmosphere features three asymptotically distinct time scales, namely, those of advection, internal gravity waves, and sound waves; (ii) within this range of stratifications, the structures and frequencies of the linearized internal wave modes of the compressible, anelastic, and pseudoincompressible models agree up to the order of Mμ; and (iii) if μ < ⅔, the accumulated phase differences of internal waves remain asymptotically small even over the long advective time scale. The argument is completed by observing that the three models agree with respect to the advective nonlinearities and that all other nonlinear terms are of higher order in M.

MBRLCatalogueRelatedBooks