MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage
Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage
Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage
Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage
Journal Article

Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage

2019
Request Book From Autostore and Choose the Collection Method
Overview
The hydrogen storage properties of the Scandium (Sc) atom modified Boron (B) doped porous graphene (PG) system were studied based on the density functional theory (DFT). For a single Sc atom, the most stable adsorption position on B-PG is the boron-carbon hexagon center after doping with the B atom. The corresponding adsorption energy of Sc atoms was −4.004 eV. Meanwhile, five H2 molecules could be adsorbed around a Sc atom with the average adsorption energy of −0.515 eV/H2. Analyzing the density of states (DOS) and the charge population of the system, the adsorption of H2 molecules in Sc-B/PG system is mainly attributed to an orbital interaction between H and Sc atoms. For the H2 adsorption, the Coulomb attraction between H2 molecules (negatively charged) and Sc atoms (positively charged) also played a critical role. The largest hydrogen storage capacity structure was two Sc atoms located at two sides of the boron-carbon hexagon center in the Sc-B/PG system. Notably, the theoretical hydrogen storage capacity was 9.13 wt.% with an average adsorption energy of −0.225 eV/H2. B doped PG prevents the Sc atom aggregating and improves the hydrogen storage effectively because it can increase the adsorption energy of the Sc atom and H2 molecule.