MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Refractive index matched, nearly hard polymer colloids
Refractive index matched, nearly hard polymer colloids
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Refractive index matched, nearly hard polymer colloids
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Refractive index matched, nearly hard polymer colloids
Refractive index matched, nearly hard polymer colloids

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Refractive index matched, nearly hard polymer colloids
Refractive index matched, nearly hard polymer colloids
Journal Article

Refractive index matched, nearly hard polymer colloids

2019
Request Book From Autostore and Choose the Collection Method
Overview
Refractive index matched particles serve as essential model systems for colloid scientists, providing nearly hard spheres to explore structure and dynamics. The poly(methyl methacrylate) latexes typically used are often refractive index matched by dispersing them in binary solvent mixtures, but this can lead to undesirable changes, such as particle charging or swelling. To avoid these shortcomings, we have synthesized refractive index matched colloids using polymerization-induced self-assembly (PISA) rather than as polymer latexes. The crucial difference is that these diblock copolymer nanoparticles consist of a single core-forming polymer in a single non-ionizable solvent. The diblock copolymer chosen was poly(stearyl methacrylate)–poly(2,2,2-trifluoroethyl methacrylate) (PSMA–PTFEMA), which self-assembles to form PTFEMA core spheres in n -alkanes. By monitoring scattered light intensity, n -tetradecane was found to be the optimal solvent for matching the refractive index of such nanoparticles. As expected for PISA syntheses, the diameter of the colloids can be controlled by varying the PTFEMA degree of polymerization. Concentrated dispersions were prepared, and the diffusion of the PSMA–PTFEMA nanoparticles as a function of volume fraction was measured. These diblock copolymer nanoparticles are a promising new system of transparent spheres for future colloidal studies.
Publisher
The Royal Society Publishing

MBRLCatalogueRelatedBooks