MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study
Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study
Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study
Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study
Journal Article

Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study

2010
Request Book From Autostore and Choose the Collection Method
Overview
Fire disturbance at high latitudes modifies a broad range of ecosystem properties and processes, thus it is important to monitor the response of vegetation to fire disturbance. This monitoring effort can be aided by lidar remote sensing, which captures information on vegetation structure, particularly canopy height metrics. We used lidar data acquired from the Geoscience Laser Altimetry System (GLAS) on ICESAT to derive canopy information for a wide range of burned areas across Alaska. The GLAS data aided our analysis of postfire disturbance and vegetation recovery by allowing us to derive returned energy height metrics within burned area perimeters. The analysis was augmented with MODIS reflectance data sets, which were used to stratify vegetation cover into cover type and density. We also made use of Landsat burn severity maps to further stratify the lidar metrics. Results indicate that canopy height decreases following fire, as expected, but height was not a good overall indicator of fire disturbance because many locations within the burned area perimeters either did not actually burn or experienced different levels of burn severity, typically leaving many standing trees or snags even after intensive burning. Because vegetation recovery following fire is differentially affected by burn severity, significantly greater height growth was documented in more severely burned areas due to a greater proportion of deciduous vegetation regrowth. When these factors were considered, GLAS height metrics were useful for documenting properties of regrowth in burned areas, thereby facilitating monitoring and mapping efforts following fire disturbance. A new satellite lidar sensor designed for vegetation studies would thus prove valuable information for improving ecosystem models that incorporate disturbance and recovery.

MBRLCatalogueRelatedBooks