MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Responses of an In Vitro Coculture Alveolar Model for the Prediction of Respiratory Sensitizers (ALIsens®) Following Exposure to Skin Sensitizers and Non-Sensitizers
Responses of an In Vitro Coculture Alveolar Model for the Prediction of Respiratory Sensitizers (ALIsens®) Following Exposure to Skin Sensitizers and Non-Sensitizers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Responses of an In Vitro Coculture Alveolar Model for the Prediction of Respiratory Sensitizers (ALIsens®) Following Exposure to Skin Sensitizers and Non-Sensitizers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Responses of an In Vitro Coculture Alveolar Model for the Prediction of Respiratory Sensitizers (ALIsens®) Following Exposure to Skin Sensitizers and Non-Sensitizers
Responses of an In Vitro Coculture Alveolar Model for the Prediction of Respiratory Sensitizers (ALIsens®) Following Exposure to Skin Sensitizers and Non-Sensitizers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Responses of an In Vitro Coculture Alveolar Model for the Prediction of Respiratory Sensitizers (ALIsens®) Following Exposure to Skin Sensitizers and Non-Sensitizers
Responses of an In Vitro Coculture Alveolar Model for the Prediction of Respiratory Sensitizers (ALIsens®) Following Exposure to Skin Sensitizers and Non-Sensitizers
Journal Article

Responses of an In Vitro Coculture Alveolar Model for the Prediction of Respiratory Sensitizers (ALIsens®) Following Exposure to Skin Sensitizers and Non-Sensitizers

2025
Request Book From Autostore and Choose the Collection Method
Overview
In recent years, a global increase in allergy incidence following chemical exposure has been observed. While the process of skin sensitization is well characterized through the adverse outcome pathway (AOP) framework, the immunological mechanisms underlying respiratory sensitization remain less well understood. Respiratory sensitizers are classified as substances of very high concern (SVHC) under the European Union (EU) regulation for the registration, evaluation, authorization and restriction of chemicals (REACH), emphasizing the importance of evaluating respiratory tract sensitization as a critical hazard. However, the existing new approach methodologies (NAMs) for the identification of skin sensitizers lack the capacity to differentiate between skin and respiratory sensitizers. Thus, it is imperative to develop physiologically relevant test systems specifically tailored to assess respiratory sensitizers. This study aimed to evaluate the efficacy of ALIsens®, a three-dimensional (3D) in vitro alveolar model designed for the identification of respiratory sensitizers and to determine its ability to correctly identify sensitizers. In this study, we used a range of skin sensitizers and non-sensitizers to define the optimal exposure dose, identify biomarkers, and establish tentative thresholds for correct sensitizer classification. The results demonstrate that ALIsens® is a promising in vitro complex model that could successfully discriminate respiratory sensitizers from skin sensitizers and non-sensitizers. Furthermore, the thymic stromal lymphopoietin receptor (TSLPr) cell surface marker was confirmed as a reliable biomarker for predicting respiratory sensitization hazards.