MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle
Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle
Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle
Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle
Journal Article

Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle

2011
Request Book From Autostore and Choose the Collection Method
Overview
The nitrogen (N) cycle contains two different processes of dissimilatory nitrate (NO3−) reduction, denitrification and dissimilatory NO3− reduction to ammonium (DNRA). While there is general agreement that the denitrification process takes place in many soils, the occurrence and importance of DNRA is generally not considered. Two approaches have been used to investigate DNRA in soil, (1) microbiological techniques to identify soil microorganisms capable of DNRA and (2) 15N tracing to elucidate the occurrence of DNRA and to quantify gross DNRA rates. There is evidence that many soil bacteria and fungi have the ability to perform DNRA. Redox status and C/NO3− ratio have been identified as the most important factors regulating DNRA in soil. 15N tracing studies have shown that gross DNRA rates can be a significant or even a dominant NO3− consumption process in some ecosystems. Moreover, a link between heterotrophic nitrification and DNRA provides an alternative pathway of ammonium (NH4+) production to mineralisation. Numerical 15N tracing models are particularly useful when investigating DNRA in the context of other N cycling processes. The results of correlation and regression analyses show that highest gross DNRA rates can be expected in soils with high organic matter content in humid regions, while its relative importance is higher in temperate climates. With this review we summarise the importance and current knowledge of this often overlooked NO3− consumption process within the terrestrial N cycle. We strongly encourage considering DNRA as a relevant process in future soil N cycling investigations.