MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Nutrigonometry II: Experimental strategies to maximize nutritional information in multidimensional performance landscapes
Nutrigonometry II: Experimental strategies to maximize nutritional information in multidimensional performance landscapes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Nutrigonometry II: Experimental strategies to maximize nutritional information in multidimensional performance landscapes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Nutrigonometry II: Experimental strategies to maximize nutritional information in multidimensional performance landscapes
Nutrigonometry II: Experimental strategies to maximize nutritional information in multidimensional performance landscapes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Nutrigonometry II: Experimental strategies to maximize nutritional information in multidimensional performance landscapes
Nutrigonometry II: Experimental strategies to maximize nutritional information in multidimensional performance landscapes
Journal Article

Nutrigonometry II: Experimental strategies to maximize nutritional information in multidimensional performance landscapes

2022
Request Book From Autostore and Choose the Collection Method
Overview
Animals regulate their nutrient consumption to maximize the expression of fitness traits with competing nutritional needs (“nutritional trade‐offs”). Nutritional trade‐offs have been studied using a response surface modeling approach known as the Geometric Framework for nutrition (GF). Current experimental design in GF studies does not explore the entire area of the nutritional space resulting in performance landscapes that may be incomplete. This hampers our ability to understand the properties of the performance landscape (e.g., peak shape) from which meaningful biological insights can be obtained. Here, I tested alternative experimental designs to explore the full range of the performance landscape in GF studies. I compared the performance of the standard GF design strategy with three alternatives: hexagonal, square, and random points grid strategies with respect to their accuracy in reconstructing baseline performance landscapes from a landmark GF dataset. I showed that standard GF design did not reconstruct the properties of baseline performance landscape appropriately particularly for traits that respond strongly to the interaction between nutrients. Moreover, the peak estimates in the reconstructed performance landscape using standard GF design were accurate in terms of the nutrient ratio but incomplete in terms of peak shape. All other grid designs provided more accurate reconstructions of the baseline performance landscape while also providing accurate estimates of nutrient ratio and peak shape. Thus, alternative experimental designs can maximize information from performance landscapes in GF studies, enabling reliable biological insights into nutritional trade‐offs and physiological limits within and across species. In behavioral ecology, we have a powerful method, known as the Geometric Framework for Nutrition (GF), to study nutritional ecology. However, we have not yet, in the three decades since it was proposed, fully investigated whether its fundamental experimental design is likewise powerful. This study investigate the original and alternative sampling designs to reconstruct GF performance landscapes.