MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Remote Sensing Image Scene Classification in Hybrid Classical–Quantum Transferring CNN with Small Samples
Remote Sensing Image Scene Classification in Hybrid Classical–Quantum Transferring CNN with Small Samples
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Remote Sensing Image Scene Classification in Hybrid Classical–Quantum Transferring CNN with Small Samples
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Remote Sensing Image Scene Classification in Hybrid Classical–Quantum Transferring CNN with Small Samples
Remote Sensing Image Scene Classification in Hybrid Classical–Quantum Transferring CNN with Small Samples

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Remote Sensing Image Scene Classification in Hybrid Classical–Quantum Transferring CNN with Small Samples
Remote Sensing Image Scene Classification in Hybrid Classical–Quantum Transferring CNN with Small Samples
Journal Article

Remote Sensing Image Scene Classification in Hybrid Classical–Quantum Transferring CNN with Small Samples

2023
Request Book From Autostore and Choose the Collection Method
Overview
The scope of this research lies in the combination of pre-trained Convolutional Neural Networks (CNNs) and Quantum Convolutional Neural Networks (QCNN) in application to Remote Sensing Image Scene Classification(RSISC). Deep learning (RL) is improving by leaps and bounds pretrained CNNs in Remote Sensing Image (RSI) analysis, and pre-trained CNNs have shown remarkable performance in remote sensing image scene classification (RSISC). Nonetheless, CNNs training require massive, annotated data as samples. When labeled samples are not sufficient, the most common solution is using pre-trained CNNs with a great deal of natural image datasets (e.g., ImageNet). However, these pre-trained CNNs require a large quantity of labelled data for training, which is often not feasible in RSISC, especially when the target RSIs have different imaging mechanisms from RGB natural images. In this paper, we proposed an improved hybrid classical–quantum transfer learning CNNs composed of classical and quantum elements to classify open-source RSI dataset. The classical part of the model is made up of a ResNet network which extracts useful features from RSI datasets. To further refine the network performance, a tensor quantum circuit is subsequently employed by tuning parameters on near-term quantum processors. We tested our models on the open-source RSI dataset. In our comparative study, we have concluded that the hybrid classical–quantum transferring CNN has achieved better performance than other pre-trained CNNs based RSISC methods with small training samples. Moreover, it has been proven that the proposed algorithm improves the classification accuracy while greatly decreasing the amount of model parameters and the sum of training data.