MbrlCatalogueTitleDetail

Do you wish to reserve the book?
MDFN: Enhancing Power Grid Image Quality Assessment via Multi-Dimension Distortion Feature
MDFN: Enhancing Power Grid Image Quality Assessment via Multi-Dimension Distortion Feature
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
MDFN: Enhancing Power Grid Image Quality Assessment via Multi-Dimension Distortion Feature
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
MDFN: Enhancing Power Grid Image Quality Assessment via Multi-Dimension Distortion Feature
MDFN: Enhancing Power Grid Image Quality Assessment via Multi-Dimension Distortion Feature

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
MDFN: Enhancing Power Grid Image Quality Assessment via Multi-Dimension Distortion Feature
MDFN: Enhancing Power Grid Image Quality Assessment via Multi-Dimension Distortion Feature
Journal Article

MDFN: Enhancing Power Grid Image Quality Assessment via Multi-Dimension Distortion Feature

2025
Request Book From Autostore and Choose the Collection Method
Overview
Low-quality power grid image data can greatly affect the effect of deep learning in the power industry. Therefore, adopting accurate image quality assessment techniques is essential for screening high-quality power grid images. Although current blind image quality assessment (BIQA) methods have made some progress, they usually use only one type of feature and ignore other factors that affect the quality of images, such as noise and brightness, which are highly relevant to low-quality power grid images with noise, underexposure, and overexposure. Therefore, we propose a multi-dimension distortion feature network (MDFN) based on CNN and Transformer, which considers high-frequency (edges and details) and low-frequency (semantic and structural) features of images, along with noise and brightness features, to achieve more accurate quality assessment. Specifically, the network employs a dual-branch feature extractor, where the CNN branch captures local distortion features and the Transformer branch integrates both local and global features. We argue that separating low-frequency and high-frequency components enables richer distortion features. Thus, we propose a frequency selection module (FSM) which extracts high-frequency and low-frequency features and updates these features to achieve global spatial information fusion. Additionally, previous methods only use the CLS token for predicting the quality score of the image. Considering the issues of severe noise and exposure in power grid images, we design an effective way to extract noise and brightness features and combine them with the CLS token for the prediction. The results of the experiments indicate that our method surpasses existing approaches across three public datasets and a power grid image dataset, which shows the superiority of our proposed method.