MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Page curve for an evaporating black hole
Page curve for an evaporating black hole
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Page curve for an evaporating black hole
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Page curve for an evaporating black hole
Page curve for an evaporating black hole

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Page curve for an evaporating black hole
Page curve for an evaporating black hole
Journal Article

Page curve for an evaporating black hole

2020
Request Book From Autostore and Choose the Collection Method
Overview
A bstract A Page curve for an evaporating black hole in asymptotically flat spacetime is computed by adapting the Quantum Ryu-Takayanagi (QRT) proposal to an analytically solvable semi-classical two-dimensional dilaton gravity theory. The Page time is found to be one third of the black hole lifetime, at leading order in semi-classical corrections. A Page curve is also obtained for a semi-classical eternal black hole, where energy loss due to Hawking evaporation is balanced by an incoming energy flux.